Glycogen-2

Glycogen Depots Is The Best Marathon Fuel

The body gets energy by decomposing the foods and drinks we intake. The condition for the body to decompose the dietary constituents is that there is enough oxygen present. Every cell in the body needs oxygen in order to live – to getting energy. The oxygen supply has an upper limit, since the body only can absorb a certain amount per minute, which depends on the physical fitness – the training level. Here we get to a practical Glycogen definition:

glycogen-definition-your-body's-energy-supply-Glycogen-illustrated-chemical-process
Illustrated glycogen process in the body

Glycogen Depots Is The Best Marathon Fuel and in a Marathon race it improves the Result if you control the pace well. Glucose is the main source of fuel for our cells. The stored form of glucose is made up of many connected glucose molecules, which is called glycogen. When the body doesn’t need to use the glucose for energy, it stores it in the liver and muscles. When you need energy, glycogen is broken down to release glucose into the bloodstream to be used as fuel for the cells. Below is how it works in practice.

Oxygen Consumption Increases with Working Intensity

By increasing workloads as with running, increases the muscle’s need for energy and thus the need for oxygen. The increased need for oxygen is the reason why you get winded and breathing faster when you run. VO2 Max (Maximum oxygen uptake) is the maximum aerobic capacity to perform sustained aerobic efforts. In long distance running – with distances from about 2 km and up – you run with an intensity that is lower than the limit for the maximum oxygen uptake. This kind of running consists of aerobic work. We call that Endurance training or LSD run.

By aerobic work means a work or an activity where the energy release in the muscles takes place by the presence of oxygen. This kind of decomposing means a combustion of carbohydrate (glycogen) and fat. If you on the other hand, run so fast that you cannot release enough energy only by using oxygen as for example in a short intensive sprint, you have to receive a large proportion of the energy from decomposing processes without the presence of oxygen. This type of decomposing also take place with Glycogen (carbohydrate) as energy source but without oxygen we call it anaerobic work.

The general by-product of anaerobic decomposing is lactic acid (lactate). The amount of lactic acid in the blood increases with intensity and if the intensity continues to increase, there may not be enough oxygen to cover the total energy need. Gradually accumulates lactate in the muscle’s and the amount will begin to limit the muscle’s’ ability to pull together and get them to stiffen and thus limit the speed. It can burn and hurt, while it may be difficult to coordinate the running steps properly.

Glycogen & Energy Conversion

glycogen-definition-your-bodys-energy-supply-glycogen-comes-from-carbohydydrates-in-our-food
Glycogen is essential for our energy supply and comes particular from the carbohydrates in our food

Let’s take a step further with the body’s energy supply. During work, is the chemical energy transformed into mechanical work in the muscle’s. Muscles can transform the energy in different ways, but there is only one process, that can provide energy directly to the muscle contraction. This process is cleavage of adenosine tri phosphate ATP to ADP, which releases energy for muscle work.

ATP exists only in very small quantities in muscle’s. Therefore, ATP has to be re-formed the other way from ADP to ATP again with the same speed as it decomposes to keep up a constant work. All other energy-producing processes are responsible to provide energy so the ATP can reform. When ATP is reformed, it uses as “energy supplier” again to the muscle work.

The muscle’s supply with energy to rebuild ATP from nutrients partly with oxygen availability (aerobic processes), and partly without oxygen available (anaerobic processes), the basic can expresses as:

ATP ADP + Energy

Unfortunately, is the case that there is only ATP storage for about 2 seconds of work, and if nothing happens, the muscle will collapse quickly. At relatively low intensity, when we run in easy to moderate pace with good oxygen supply, the muscle’s choose to breakdown fat to obtain energy.

Combustion of fat is like this:

Fat + Oxygen + ADP Carbon dioxide + ATP + Water

Waste products are carbon dioxide and water, as we get rid of through exhalation and sweat.

Energy conversion of carbohydrates (Glycogen) can divide into 2 phases:

1) Glycogen + ADP Lactate + ATP

2) Lactate + Oxygen + ADP Carbon dioxide + ATP + Water

When there is not sufficient Oxygen supply to the muscle’s to produce enough energy by aerobic processes, the muscle ensuring the energy to rebuilding ATP via an increased anaerobic decomposing of glycogen. As seen in the first phase 1), there is no oxygen consuming (anaerobic combustion). The lactate arising in this phase at low / moderate intensity, will includes in the second phase as fuel 2). It means the result of combustion of carbohydrate by low / moderate intensity is:

Glycogen + Oxygen + ADP Carbon dioxide + ATP + Water

When the intensity increases so much that the system no longer can keep up with converting lactate to energy, there will be an accumulation of lactate in the muscle. At the beginning, the muscle feels burning, later as paralyzed and it will no longer be possible to continue with the same intensity. By measuring the content of lactate in the blood, we can get an insight into the intensity of work.

When we start our running, it will take few minutes before our aerobic systems activates, and therefore there will be an anaerobic combustion with accumulation of lactate. However, the lactate will quickly disappear when the aerobic processes start up.

Enzymes Support Glycogen Conversion

In muscle fibers are a number of substances known as enzymes, which play a vital role in the muscle’s ability to work. Enzymes in general are proteins that controls the speed of chemical reactions in living organisms. The enzyme includes in the processes, but consumes not. By means of specific enzymes, is the individual muscle fiber able to optimize and regulate the energy conversion.

Some of these enzymes are involved in the final decomposing of fat and glycogen. The more aerobic trained a muscle fiber is, the greater the quantity and activity of these specific enzymes in the muscle fiber. It means a larger energy conversion by aerobic processes, because the energy production maximizes. Thus, you will have a more effective run. Conversely, decreases the content of these enzymes by inactivity – if you do not run in a period. However, it takes more time to increase the amount of enzymes than it takes to lose it.

Fat and Glycogen

We have seen that these are the critical components in the energy Supply. They are the crucial factors in Marathon training, when we go for the best results. The Body use Glycogen and fat as energy but the choice of either glycogen or fat depends mainly on the presence of Oxygen.

If you are a seriously runner like myself , I hope you enjoy this review and if you have any questions about Glycogen Definition – The Body’s Energy Supply or want to leave your own Personal review, please leave a comment below.

Share this Posts with your friends

Leave a Comment

You cannot copy content of this page